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1. INTRODUCTION

In last three decades, remarkable progress in technology has been made,
enabling the production of semiconductor structures of nanometer size. This
is the length scale where the laws of quantum mechanics rule and a range
of new physical effects is manifested. Fundamental laws of physics can be
tested on the one hand, while on the other hand many possible applications
are rapidly emerging.

The ultimate nanostructure where carriers are confined in all three spa-
tial dimensions is called a quantum dot. In the last 15 years quantum dots
have been produced in several different ways in a broad range of semicon-
ductor material systems. The properties of quantum dots and their possible
applications are largely dependent on the method they have been obtained
with, which can therefore be used as a criterion for classification of different
types of quantum dots:

Electrostatic quantum dots. One can fabricate quantum dots by
restricting the two dimensional electron gas in a semiconductor heterostruc-
ture laterally by electrostatic gates, or vertically by etching techniques [1, 2].
The properties of this type of quantum dots, sometimes termed as electro-
static quantum dots, can be controlled by changing the applied potential at
gates, the choice of the geometry of gates or by external magnetic field. The
typical size of these dots is of the order of 100 nm.

Self-assembled quantum dots. Self-assembled quantum dots are ob-
tained in heteroepitaxial systems with different lattice constants. During
the growth of a layer of one material on top of another, the formation of
nanoscale islands takes place [3], if the width of the layer (so called wetting
layer) is larger than a certain critical thickness. This growth mode is called
Stranski-Krastanov mode. The most common experimental techniques of
the epitaxial nanostructure growth are Molecular Beam Epitaxy (MBE)
and Metalorganic Chemical Vapor Deposition (MOCVD) [4, 5]. Since the
quantum dot material is embedded in another material, we will refer to
these dots also as embedded quantum dots. Self-assembled quantum dots
typically have lateral dimensions of the order of 15 − 30nm and height of
the order 3 − 7nm.

Colloidal quantum dots. A very different approach to obtain quan-
tum dots is to synthesize single crystals of the size of a few nanometers,
via chemical methods. The dots obtained this way are called nanocrystals
or colloidal quantum dots [6]. Their size and shape can be controlled by
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the duration, temperature and ligand molecules used in the synthesis [7].
Colloidal quantum dots are typically of spherical shape. They are often
smaller than embedded quantum dots with the diameter sometimes as low
as 2 − 4nm.

Quantum dots have enabled the study of many fundamental physical ef-
fects. Electrostatic quantum dots can be controllably charged with a desired
number of electrons and therefore the whole periodic system [8] of artificial
atoms created, providing a wealth of data from which an additional insight
into the many-body physics of fermion systems could be obtained [1]. Single
electron transport and Coulomb blockade effects on the one hand, and the
regime of Kondo physics on the other hand, have been investigated [9, 10].

One of the most exciting aspects of quantum dot research is certainly
the prospect of using the state of the dot (spin state, exciton or charged
exciton) as a qubit in quantum information processing. Coherent control of
an exciton state in a single dot selected from an ensemble of self-assembled
quantum dots has been achieved [11], as well as the manipulation of the
spin state in electrostatic quantum dots [12, 13]. The theoretical and exper-
imental progress in the field of spin-related phenomena in quantum dots has
been review in [1, 14]. These results appear promising, although the control
of a larger number of quantum dot qubits is not feasible yet, mainly due to
difficulty of controlling qubit-qubit interactions.

The practical applications of quantum dots certainly do not lag behind
these exciting areas of fundamental science with quantum dots. For example,
colloidal quantum dots have found several cutting-edge applications such as
fluorescent biological labels [15], highly efficient photovoltaic solar cells [16],
and nanocrystal based light emitting diodes [6]. Self-assembled quantum
dots find the main application as optoelectronic devices - lasers [17], optical
amplifiers [18], single photon sources [19, 20] and photodetectors [21, 22, 23].

This review will focus on theoretical methods used for calculation of
physical properties of self-assembled and colloidal quantum dots.

2. SINGLE PARTICLE METHODS

While on the one hand, quantum dots seem to be small and simple ob-
jects, a look at their structure from the atomistic side reveals their high
complexity. Bearing in mind that the lattice constants of the underlying
semiconductor materials are typically of the order of 0.5nm, one can esti-
mate that a single self-assembled quantum dot contains ∼ 106 nuclei and
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even a larger number of electrons interacting among each other with long
range Coulomb forces. Even the smallest colloidal quantum dots contain
thousands of atoms.

This clearly indicates that direct solution of the many body quantum dot
Hamiltonian is not a feasible approach and that smart and efficient methods
need to be developed. In this Sec. 2, methods that reduce the problem to
an effective single-particle equation will be reviewed.

More than two decades ago, Brus introduced [24, 25] a simple effective
mass method to calculate ionization energies, electron affinities and optical
transition energies in semiconductor nanocrystals. Within Brus’s model, the
single particle (electron or hole) energies E and wave functions ψ(r) satisfy
the Schrödinger’s equation given as:

[ − 1

2m∗∇
2 + P (r)]ψ(r) = Eψ(r), (1)

where m∗ is the electron or hole effective mass. The system of atomic
units where the reduced Planck’s constant h̄, the electron mass m0 and
the electron charge e are all equal to 1 was used in Eq. 1 and will be used
in what follows. For simplicity, Eq. 1 assumes that the particle must be
confined within the dot, i.e. that the potential outside the dot is infinite.
This simplifying assumption can be easily relaxed by adding a more realistic
confining potential Vconf(r).

P (r) in Eq. 1 is the additional potential caused by the presence of the
surface of the quantum dot. It has a certain analogy with electrostatic im-
age potentials in the case when a charge is near the surface of the metal or
the interface between two dielectrics. It can be obtained by calculating the
interaction energy between a bare electron and its induced screening poten-
tial. The extra interaction energy of an electron at r inside the quantum
dot compared to the corresponding value in bulk is then P (r).

To model the two particle excitations (such as for example electron +
hole = exciton), Brus introduced an electrostatic interaction energy term
among these particles as

V (r1, r2) = ± e2

ǫ|r1 − r2|
± PM (r1, r2) + P (r1) + P (r2), (2)

where ǫ is the dielectric constant, PM corresponds to the interaction of the
charge of one particle with surface induced polarization potential of the
other particle, while the P -terms describe the interaction of the charge of
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one particle with its own surface induced polarization potential, as previ-
ously described. The plus (minus) sign is for the two particles of the same
(opposite) charge. The effective exciton Hamiltonian is then given as

Hexciton = − 1

2me
∇2

e −
1

2mh
∇2

h − e2

ǫ|re − rh|
− PM (re, rh) + P (re) + P (rh).

(3)
The solution of the eigenvalue problem of this Hamiltonian can be written
down analytically as:

E∗ ≃ Eg +
π2

2R2
[

1

me
+

1

mh
] − αce

2

ǫR
+ small term, (4)

where αc = 2 − Si(2π)
π

+ Si(4π)
2π

≈ 1.8 and Si(x) is the sine integral function
Si(x) =

∫ x
0

sin t
t dt. The last term in Eq. 4 originates from the last three terms

in Eq. 3. One should note that P (r) = PM (r, r)/2, therefore PM (re, rh) and
P (re) + P (rh) cancel out exactly when re = rh and lead to a small term
when re and rh are not equal. This small term can often be ignored in
practice for spherical quantum dots.

The cancellation of the polarization terms gives as a guide for a general
approach for calculating the excitons in nanocrystals. As a first step, one
calculates the single particle energies from Eq. 1 without the polarization
term. As a second step, the screened electron-hole interaction is added per-
turbatively. One should however have in mind that such an approach is an
approximation based on classical electrostatic consideration. It ignores the
effects such as dynamic screening and the local field effects of the dielectric
function. The single particle states obtained this way are not the quasi-
particles from the usual GW formalism (The eigenenergies of Eq. 1 with
the P -term are the quasi particle energies that correspond to the electron
affinity and ionization potential.). However, such single particle states are
the natural extension of single-particle states considered in other nanostruc-
tures, such as quantum wells and superlattices. These are also fully in line
with eigen states defined in the density functional theory discussed below.
The rest of Sec. 2 will therefore be completely devoted to the theoretical
frameworks and methodologies for calculating these states.

2.1 Density functional theory

Within the density functional theory (DFT) [26], the many-body Hamil-
tonian problem reduces to a set of single particle Kohn-Sham equations [27]

6



that read
(

−1

2
∇2 + Vion + VH + VXC

)

ψi(r) = ǫiψi(r). (5)

In the above equation ψi(r) and ǫi are the wave functions and energies of
Kohn-Sham orbitals, Vion(r) is the potential of all nuclei in the system,
VH(r) is the Hartree potential of electrons given as

VH(r) =

∫

dr′
ρ(r′)

|r − r′| , (6)

where
ρ(r) =

∑

|ψi(r)|2 (7)

is the electronic charge density of the system. The summation in Eq. (7)
goes over all occupied Kohn-Sham orbitals. The exchange-correlation po-
tential VXC in Eq. (5) is supposed to take into account all the other effects
of electron-electron interactions beyond the simple Coulomb repulsion (de-
scribed in VH). The exact form of this potential is not known and it needs to
be approximated. The most widely used approximation is the local density
approximation (LDA) where it is assumed that VXC depends only on the
local electronic charge density and takes the same value as in the free elec-
tron gas of that density [27]. Eqs. 5 and 7 need to be solved self-consistently
until the convergence is achieved.

Density functional theory calculations are still computationally demand-
ing, partly due to the necessity of self consistent calculations. One also needs
to calculate all the orbitals ψi in each iteration, while in semiconducting sys-
tems one is often interested in only a few states in the region around the
gap that determine the optical and transport properties of the system.

An alternative approach that avoids the full self-consistent calculation
without loss in accuracy is the charge patching method (CPM) [28, 29, 30,
31, 32, 33]. The basic assumption of the CPM is that the charge density
around a given atom depends only on the local atomic environment around
the atom. This is true if there is no long range external electric field that
causes long-range charge transfer. This is often satisfied if there is a band
gap in the material. Based on this assumption, the idea is to calculate (using
DFT in LDA for example) the charge density of some small prototype system
ρLDA(r), decompose it into contributions from individual atoms (charge
density motifs) and then use these motifs to patch the charge density of a
large system.
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In particular, charge density motifs are calculated from the charge den-
sity of the prototype system as:

mIα
(r − Rα) = ρLDA(r)

wα(|r − Rα|)
∑

Rα′
wα′(|r − Rα′ |) (8)

where Rα is the position of atom type α, and mIα
(r − Rα) is the charge

density motif of this atom type. wα(r) is an exponentially decaying function,
that defines the partition function wα(|r − Rα|)/

∑

Rα′
wα′(|r − Rα′ |) that

divides the space into (mutually overlapping) regions assigned to each atom.
mIα

(r − Rα) is therefore a localized function that can be stored in a fixed
size numerical array. Iα denotes the atomic bonding environment of the
atom α. After the charge density motifs are obtained from small prototype
systems, the total charge density of the large nanosystem is obtained simply
as the sum of motifs assigned to each of the atoms:

ρpatch(r) =
∑

Rα

mIα
(r − Rα). (9)

Once the charge density is obtained using the charge patching proce-
dure, the single particle Hamiltonian can be generated by solving the Pois-
son equation for the Hartree potential and using the LDA formula for the
exchange-correlation potential. The energies and wave functions of a few
states around the gap can then be found using the methods developed to
find a few eigenvalues of the Hamiltonian only, such as the folded spectrum
method [34] (that will be described in Sec. 2.2).

The charge patching method was used to generate the charge densities of
carbon fullerenes [33], semiconductor alloys [28], semiconductor impurities
[29], organic molecules and polymers [35], and semiconductor quantum dots
[32]. The resulting patched charge density is typically within 1% of the self-
consistently calculated LDA charge density, and the corresponding energies
are within 30 meV. Typical numerical uncertainty (due to basis function
truncations and different nonlocal pseudopotential treatments) of an LDA
calculation is about the same order of magnitude. Therefore, the charge
patching method can be considered to be as accurate as the direct ab initio

calculations.
There are however cases where charge patching method cannot be used.

One example is the total dipole moment of an asymmetric quantum dot
[36]. Such a dipole moment can also induce an internal electric field, and
cause the long range charge transfer in the system. It is therefore necessary
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to solve the charge density selfconsistently, which can be done using the
DFT/LDA method. However, a much more efficient linear scaling method
to do such calculations has been developed recently: the linear scaling three
dimensional fragment (LS3DF) method [37]. Within the LS3DF method, the
system is divided into many small fragments. The wave functions and charge
densities of each fragment are calculated separately, each within the standard
DFT/LDA method, using a group of a small number of computer processors.
After the fragment charge densities are obtained, they are patched together
to get the charge density of the whole system using a novel scheme that
ensures that the artificial surface effects due to the system subdivision will be
cancelled out among the fragments. The patched charge density is then used
to solve a global Poisson equation for the global potential. An outside loop
is iterated which yields the selfconsistency between the global charge density
and the input potential. Due to the use of this novel patching scheme, the
LS3DF is very accurate, with its results (including the dipole moments)
essentially the same as the original direct DFT calculation results [37], but
with potentially thousand times speed ups, for systems with more than ten
thousand atoms. As the system grows larger, there are more fragments
(while the fragment size is fixed), thus more processor groups can be used
to solve them. This provides a perfect parallelization to the number of
processors. Meanwhile the total computational cost is proportional to the
number of fragments, and consequently the total number of atoms.

A well known problem of the LDA based calculations is that the band gap
is severely underestimated [38, 39]. DFT is rigorously only valid for ground
state properties, and there is no physical meaning for the Kohn-Sham eigen
energies [27]. This conceptual difficulty can be circumvented by using time-
dependent DFT which will be discussed later. In practice however, one
often restricts to the simple empirical ways to correct the band gap error.
One such way is to slightly modify the LDA Hamiltonian to fit the crystal
bulk band structure, which can be done for example by changing the s, p, d
nonlocal pseudopotentials [29] to move the position of the conduction band
while keeping the position of the valence band unchanged. This approach is
based on the assumption that the valence band alignment predicted by the
LDA is reliable.

For the treatment of colloidal quantum dots, one also has to take care of
the quantum dot surface. The surface of an unpassivated nanocrystal con-
sists of dangling bonds that introduce band gap states. One way to remove
these states is to pair the dangling bond electron with other electrons. If a
surface atom has m valence electrons, this atom provides m/4 electrons to
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each of its four bonds in a tetrahedral crystal. To pair m/4 electrons in a
dangling bond, a passivating agent should provide 2 −m/4 additional elec-
trons. To keep the system locally neutral, there must be a positive 2−m/4
nuclear charge nearby. The simplest passivation agent can therefore be a
hydrogenlike atom with 2−m/4 electrons and a nuclear charge Z = 2−m/4.
For IV-IV group materials like Si, this is a Z = 1 hydrogen atom. For III-V
and II-VI systems, the resulting atoms have a noninteger Z, consequently
these are pseudohydrogen atoms. These artificial pseudohydrogen atoms do
describe the essential features of good passivation agents and serve as sim-
plified models for the real passivation situations, where organic molecules
with complicated and often unknown structure are involved.

2.2 Empirical pseudopotential method

The empirical pseudopotential method (EPM) was introduced in 1960s
by Cohen et.al. [40, 41] to fit the band structure of bulk semiconductors.
Within the EPM, the Schrödinger equation is given as:

[ − 1

2
∇2 + V (r)]ψi(r) = Eiψi(r) (10)

with
V (r) =

∑

atom

vatom(|r − Ratom|), (11)

where Ratom are the positions of the atoms and vatom(r) are spherical atomic
potentials that in an effective manner take into account the effects of nuclei,
core and valence electrons. The great success of the EPM was that it was
actually possible to fit the band structure of the semiconductors using this
single particle approach.

In the EPM calculations, the plane wave representation is typically used,
i.e. the wave function is expanded as a linear combination of plane waves,
where the summation is restricted only to reciprocal lattice q vectors with
kinetic energy smaller than certain predefined value Ecut. To evaluate the
resulting Hamiltonian matrix in plane wave representation, Fourier trans-
forms of atomic potentials vatom(|q|) are needed. Only a few of these are
non zero. These are used as adjustable parameters to fit the semiconductor
band structure.

To apply the EPM to nanostructures, one needs to have a continuous
vatom(q) curve, since the supercell is very large then and consequently q
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points are very dense. The continuous vatom(q) can be represented by a
function of 4 parameters a1 – a4

v(q) =
a1

(

q2 − a2
)

a3ea4q2 − 1

or a sum of Gaussians

v(q) =
∑

aie
−ci(q−bi)

2

.

For a full description of the colloidal quantum dots, the pseudopotentials of
surface passivating hydrogen or pseudohydrogen atoms need to be fitted as
well. The pseudopotentials are fitted to experimental data and first princi-
ples calculations of bulk band structures, clean surface work function, and
the density of states of chemisorbed surfaces.

Another approach to fit the pseudopotentials is to fit them directly to the
LDA calculated potential [42] and then modify them slightly to correct the
band gap error. The vatom(q) obtained in such a manner are able to fit the
bandstructure within 0.1 eV and have in the same time a 99% overlap with
the original LDA wavefunction. This approach, called the semi-empirical
pseudopotential method (SEPM) has been applied to CdSe [42], InP [43] and
Si [42] nanostructures, representing II-VI, III-V, and IV-IV semiconductor
systems respectively.

With the empirical or semi-empirical pseudopotentials at hand, one is
able to construct the single particle Hamiltonian. The diagonalization of
this Hamiltonian is a routine task in the case of bulk semiconductors due
to a small number of atoms in a supercell. However, this is no longer the
case in quantum dots which contain a large number of atoms. Even the
conventional conjugate gradient method [44] which is often used in ab initio

calculations cannot be used since it scales as O(N3) due to an orthogonal-
ization step which is a necessary part of the algorithm. Fortunately, for
the analysis of most electronic, transport and optical properties of semi-
conductor nanosystems, only the states in the spectral region close to the
band gap are relevant and there is no need to find all the eigenstates of the
Hamiltonian. The ”folded spectrum method” (FSM), specialized to find the
eigenstates in a certain spectral region only, has therefore been developed
by Wang and Zunger [34]. The method is based on the fact that the Hamil-
tonians H and (H − Eref)

2 have the same eigenvectors and that the few
lowest eigenvectors of (H − Eref)

2 are the eigenvectors of H closest to the
energy Eref. The lowest eigenstates of (H − Eref)

2 are then solved using
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the conjugate gradient method. It turns out that the use of (H − Eref)
2

compared to H slows down the convergence but with the use of precondi-
tioners and a large number of iterations, convergence can still be achieved.
The folded spectrum method within the plane wave representation has been
implemented in the parallel code PESCAN [45]. It can be routinely used
to calculate systems with a few thousand atoms, or even near million atom
systems [46]. Since only a few wavefunctions are calculated, the computa-
tional effort scales linearly to the size of the system. Linear scaling method
for the calculation of the total and local electronic density of states and the
optical absorption spectrum has been developed by Wang [47]. We refer the
reader to Ref. [47] for the description of this method, called the generalized
moments method (GMM).

Another method for solution of the EPM Hamiltonian is the linear com-
bination of bulk Bloch bands (LCBB) method [48]. The disadvantage of the
plane-wave expansion is that it does not lend itself to systematic approxi-
mations. A basis set in which such approximations can be naturally made
is the basis of full zone bulk Bloch states. In this basis the wavefunction
expansion reads

ψ(r) =
NB
∑

n

Nk
∑

k

Ck,nφ
0
kn(r), (12)

where

φ0
kn(r) =

1√
N
ukn(r)eik·r (13)

is the bulk Bloch function of the constituent bulk solid, where n is the band
index, k is the supercell reciprocal-lattice vector, N the number of primary
cells in the supercell. The LCBB expansion allows one to select the phys-
ically important bands n and k-points. As a result, the number of basis
functions can be reduced significantly compared to the plane-wave basis.
It turns out that it is possible to use a fixed number of basis functions to
achieve the same degree of accuracy for different system sizes, in contrast
to the plane-wave basis where the number of basis functions scales linearly
with system size. The origin of this effect is the fact that when the size of
the system increases the envelope function of the electronic state becomes
smoother and therefore the maximum value of the k-vector needed to rep-
resent it becomes smaller. This makes the LCBB method ideal for studying
very large systems such as embedded quantum dots.

2.3 Tight-binding methods
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The tight-binding (TB) method [49] is the simplest method which still
includes the atomic structure of a quantum dot in the calculation [50, 51,
52, 53]. In the TB method one selects the most relevant atomic-like orbitals
|iα〉 localized on atom i, that are assumed to be orthonormal. The single
particle wave function is expanded in the basis of these localized orbitals as

|ψ〉 =
∑

iα

ciα|iα〉 (14)

and therefore the TB single-particle Hamiltonian is of the form

H =
∑

iα

εiα|iα〉〈iα| +
1

2

∑

iα,jβ

tiα,jβ |iα〉〈jβ|, (15)

where εiα are the energies of the orbitals (the on-site energies), while tiα,jβ

are the hopping integrals between different orbitals, that can be restricted
to include only nearest neighbors or next nearest neighbors. For the sake
of notational simplicity, the form which does not include the spin-orbit in-
teraction and therefore does not mix the states of different spin was pre-
sented. The extension to include spin-orbit interaction is straightforward.
The most popular flavor of TB is the empirical TB where the parameters of
the Hamiltonian are treated as phenomenological and fitted to reproduce the
bulk band structure obtained from experiment or higher level calculations.
In such an approach the atomic orbitals are not treated explicitly, since the
whole spectrum of the single particle Hamiltonian is determined by the on-
site energies and hopping integrals. The wavefunction is represented by the
coefficients ciα which slowly vary from site to site.

In the TB method, one restricts the atomic orbitals included to only a
few for each atom. Since one is typically interested in states around the
energy gap, one has to select the orbitals that define these states. In III-V,
IV-IV and II-VI semiconductors, these are typically the s, px, py, pz orbitals
and sometimes d orbitals. Quite often, an additional s-like orbital called
s∗ is added to provide an additional degree of freedom in fitting of the TB
parameters, which leads to models such as sp3s∗ [54] and sp3d5s∗ [55]. In
these models, the size of the resulting Hamiltonian matrix is nN × nN ,
where N is the number of atoms and n is the number of orbitals per atom
(n = 10 for sp3s∗ with spin and n = 20 for sp3d5s∗ with spin). Due to
nearest neighbors approximation, the matrix is sparse and efficient methods
for the diagonalization of sparse matrices can therefore be exploited.

One problem of the TB method is the lack of explicit basis functions.
Although these can be added after the TB eigenstates have been calculated,
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these basis functions are not an intrinsic part of the TB Hamiltonian and
its fitting process, thus their compatibility is an issue. This causes problems
to calculate physical properties like dipole transitions and Coulomb and ex-
change interactions. Another issue in treating quantum dot heterostructures
is how to choose the parameters at the interface of two materials, since only
the parameters for bulk materials are available. An approximation needs
to be introduced, usually by assuming the parameters at the interface as
a certain average of the TB parameters of the two materials. In colloidal
quantum dots, the surface has to be passivated. Here, we give an example
how this is done in the case of Si nanocrystals. The surface is passivated by
H atoms, where the TB nearest-neighbor matrix elements VH−Si between
H and Si are scaled from the Si-Si matrix elements VSi−Si according to
the Harrison’s rule [56]: VH−Si = VSi−Si(dSi−Si/dH−Si)

2, where dSi−Si and
dH−Si are the bond distances [57]. Another way to treat the surface passiva-
tion is simply to remove the dangling bond states from the calculated results
or even from the Hamiltonian before the matrix is diagonalized. This is done
by removing the hybrid sp3 dangling bond orbital from the TB Hamiltonian
basis set (e.g. by removing the Hamiltonian matrix columns and rows ex-
panded by these sp3 basis) [58]. This is a unique way of artificial passivation
only applicable to TB calculations. The ability to describe the surface atom-
istically is a big advantage of the TB model compared to the k · p model,
that will be described next.

2.4 k · p method

The previously described methods treat explicitly the atomistic details
of the nanostructure which therefore leads to their high accuracy and reli-
ability but also to a significant computational cost. In the k · p method,
central quantities are the slowly varying envelope functions that modulate
the rapidly varying atomistic wave function. Historically, k · p method was
introduced to describe the bulk band structure around a certain special
point in the Brillouin zone and later on it was extended to describe the
heterostructures.

Let the Hamiltonian of an electron in a semiconductor be

Ĥ =
p̂2

2
+ V0(r) + Ĥso, (16)

where p̂ is the momentum operator, V0(r) the crystal potential (including
nuclei, core electrons and self-consistent potential of valence electrons), and
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Ĥso the spin-orbit interaction Hamiltonian arising from relativistic correc-
tions to Schrödinger equation given by

Ĥso =
α2

4
[∇V0(r) × p̂] · σ, (17)

where α is the fine structure constant and σ is a vector of Pauli matrices

σx =

[

0 1
1 0

]

, σy =

[

0 −i
i 0

]

, σz =

[

1 0
0 −1

]

. (18)

The envelope representation of the wavefunction of an electron is given
by

Ψ(r) =
∑

i

ψi(r)ui(r), (19)

where ui(r) form the complete orthonormal set of functions with periodicity
of the Bravais lattice and ψi(r) are slowly varying envelope functions. The
most common choice of the functions ui are bulk Bloch functions at the
Γ point. After the replacement of (19) in the Schrödinger equation and
making an approximation that eliminates the non-local terms that appear
in the derivation, one arrives at [59, 60]

−1

2
∇2ψm(r) +

∑

n

(−i)pmn · ∇ψn(r) +
∑

n

Hmn(r)ψn(r) = Eψm(r). (20)

Since the second term in Eq. (20) is crucial in determining the Hamiltonian
matrix (and (−i)∇ becomes the k vector if for example the envelope function
is expanded in plane waves), the method being described is called the k · p
method. The terms in the previous equation are given by

pmn =
1

Ω

∫

um(r)∗p̂un(r)d3r, (21)

where the integration goes over the volume of the crystal unit cell Ω, and
Hmn(r) is the term that, away from the interfaces, reduces to the bulk matrix
elements of the Hamiltonian

Hmn =
1

Ω

∫

um(r)∗Ĥun(r)d3r = Emδmn, (22)

where Em is the band edge of band m. In practice, one has to restrict to
a finite number of bands. Historically, the k · p method was first applied
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to valence band (6-band Hamiltonian) [61, 62] and later on the conduction
band was added (8-band Hamiltonian) [63].

The explicit form of the 8-band Hamiltonian for the crystals with zincblende
structure (such as for example InAs, GaAs, AlSb, CdTe, GaP, GaSb, InP,
InSb, ZnS, ZnSe, and ZnTe) is given below. This Hamiltonian also pertur-
batively includes the effect of remote bands. Since the point Td symmetry
group of the zincblende crystal is a subgroup of the diamond group of Ge
and Si, the same k ·p Hamiltonian can be applied to these semiconductors,
as well. In the basis |JJz〉 that diagonalises the bulk Hamiltonian at k = 0:

|1〉 = |1
2
,−1

2
〉 = |S ↓〉,

|2〉 = |1
2
,
1

2
〉 = |S ↑〉,

|3〉 = |3
2
,
1

2
〉 = − i√

6
|(X + iY ) ↓〉 + i

√

2

3
|Z ↑〉,

|4〉 = |3
2
,
3

2
〉 =

i√
2
|(X + iY ) ↑〉,

|5〉 = |3
2
,−3

2
〉 = − i√

2
|(X − iY ) ↓〉, (23)

|6〉 = |3
2
,−1

2
〉 =

i√
6
|(X − iY ) ↑〉 + i

√

2

3
|Z ↓〉,

|7〉 = |1
2
,−1

2
〉 = − i√

3
|(X − iY ) ↑〉 +

i√
3
|Z ↓〉,

|8〉 = |1
2
,
1

2
〉 = − i√

3
|(X + iY ) ↓〉 − i√

3
|Z ↑〉,

the 8-band k · p Hamiltonian reads (where the definition k = −i∇ was
introduced)

Ĥk = (24)

16





































A 0 V + 0
√

3V −
√

2U −U
√

2V +

0 A −
√

2U −
√

3V + 0 −V
√

2V U

V −
√

2U −P +Q −S+ R 0
√

3

2
S −

√
2Q

0 −
√

3V −S −P −Q 0 R −
√

2R 1
√

2
S√

3V + 0 R+ 0 −P −Q S+ 1
√

2
S+

√
2R+

−
√

2U −V + 0 R+ S −P +Q
√

2Q
√

3

2
S+

−U
√

2V +

√

3

2
S+ −

√
2R+ 1

√

2
S

√
2Q −P − ∆ 0

√
2V U −

√
2Q 1

√

2
S+

√
2R

√

3

2
S 0 −P − ∆



































,

where

A = EC +A′k2 +
k2

2
,

U =
1√
3
P0kz,

V =
1√
6
P0(kx − iky),

P = −EV + γ1
k2

2
,

Q = γ2
1

2

(

k2
x + k2

y − 2k2
z

)

,

R = −
√

3

2

[

γ2

(

k2
x − k2

y

)

− 2iγ3kxky

]

,

S =
√

3γ3kz(kx − iky),

In previous equations |S〉, |X〉, |Y 〉 and |Z〉 are the bulk Bloch functions
that transform as s, x, y and z under the action of the symmetry group,

P0 = −i〈S|p̂x|X〉 = −i〈S|p̂y|Y 〉 = −i〈S|p̂z|Z〉, (25)

is the interband matrix element of the velocity operator [64] usually reported
in energy units as EP = 2P 2

0 , the parameter A′ is related to the conduction
band effective mass as

A′ =
1

2m∗ − P 2
0

Eg + 1
3∆

− 1

2
, (26)

∆ is the spin-orbit splitting, Eg is the energy gap (the actual energy gap
after the effect of ∆ was taken into account) equal to Eg = EC −EV , while
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γ1, γ2 and γ3 are the Luttinger parameters [61] of the 8-band model that
can be expressed in terms of the parameters of the 6-band model γL

1 , γL
2

and γL
3

γ1 = γL
1 − EP

3Eg + ∆
,

γ2 = γL
2 − 1

2

EP

3Eg + ∆
,

γ3 = γL
3 − 1

2

EP

3Eg + ∆
.

Since material parameters in the Hamiltonian of a quantum dot are
position dependent and the k operators do not commute with coordinate
operators, an ambiguity arises about the proper choice of operator ordering.
It is necessary to choose the ordering in such a way that the Hamiltonian
remains hermitian, however this condition still does not give a unique choice.
The most widely used [65, 66, 67, 68, 69] operator ordering in k · p-based
quantum dot electronic structure calculations is heuristic, symmetrical ar-
rangement of operators

f(r)kikj → 1

2

(

k̂if(r)k̂j + k̂jf(r)k̂i

)

, (27)

f(r)ki → 1

2

(

k̂if(r) + f(r)k̂i

)

.

It has been pointed out that such ordering of operators can lead to unphys-
ical solutions in some circumstances [70]. One can derive the appropriate
form of the envelope function Hamiltonian with proper operator ordering
starting from the empirical pseudopotential [59] or the LDA Hamiltonian
[71], however such Hamiltonians are still not widely used.

A variety of numerical methods can be used to solve the k · p Hamil-
tonian, these include the finite-difference methods [66, 65, 72, 73] and the
wavefunction expansion methods, where the basis functions can be plane
waves [74, 75, 76, 77, 69, 78], the eigenfunctions of the particle in a cylinder
with infinite walls [79, 80, 81] or eigenfunctions of a harmonic oscillator [82].

While the k ·p model can be quite reliable for large embedded quantum
dots, the colloidal quantum dots are often only a few nanometers in size.
In reciprocal space, this could correspond to the k point at 1/3 towards
the Brillouin zone boundary, where the k · p might no longer be adequate.
Indeed, it was found that the k · p result compared to the result of a more
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accurate calculation might differ by 50% in the confinement energy [83],
and sometimes it could change the ordering of the states [84]. Without care,
spurious states in the energy gap might appear in k · p calculations [85].
These states appear as the consequence of the fact that k · p Hamiltonian
does not correctly represent the band structure for k-vectors far away from Γ
point and can give states in the gap for these k-vectors. The finite-difference
method is in particular susceptible to the appearance of these states. The
wavefunction expansion methods are less susceptible to this [86] since by
the expansion in a finite basis set, the high k components of the envelope
function are effectively filtered out. Another issue is that the k ·p Hamilto-
nian with a limited number of bands has a larger symmetry group than the
true symmetry group of the system. This weakness from the fundamental
point of view can be turned into a strength from the computational point of
view, as it allows for block diagonalization of the Hamiltonian and therefore
a more efficient solution of the problem [87, 81, 77].

2.5 The effect of strain

In previous sections, it was assumed that positions of atoms in a quantum
dot are known a priori and that local arrangement is the same as in the
bulk crystal. However, in real structures this is certainly not the case. Self-
assembled quantum dots are grown by depositing layers of material with a
different lattice constant than the substrate and therefore the quantum dot
is strained. In colloidal quantum dots, there is also some relaxation of atoms
close to the surface. It is well understood that strain has a strong effect on
the electronic structure of semiconductors. Therefore, in this section, we
will describe how can the effect of strain be included in each of the methods
described previously.

Within the framework of density functional theory, the effect of strain
appears naturally in the formalism itself. One starts with a reasonable ini-
tial guess for the positions of atoms in the structure, then self-consistently
solves the Kohn-Sham equations and obtains the forces on all atoms. One
then moves the atoms in the direction of forces and obtains the new atomic
configuration, solves the Kohn-Sham equations again and the whole proce-
dure is repeated until forces become close to zero. In such a way one obtains
a new, relaxed configuration for the positions of atoms in the structure. Un-
fortunately, this procedure is practical only for small systems and is not
feasible for larger systems, such as quantum dots.
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A widely used methodology to overcome these difficulties is to model the
total energy of the system via a classical force field, i.e. to express it as a
function of atomic coordinates only. The valence-force field (VFF) model of
Keating [88] and Martin [89] is mostly used in inorganic semiconductors for
that purpose. Within the VFF model the energy of the system is modeled
as [90]

E =
1

2

∑

i

nn
∑

j

3αij

8(d
(0)
ij )2

[

(Ri − Rj)
2 − (d

(0)
ij )2

]2
+

1

2

∑

i

nn
∑

j,k>j

3βi,jk

8d0
ijd

0
ik

[

(Rj − Ri) · (Rk − Ri) − cos θ0(jik)d
0
ijd

0
ik

]2
,(28)

where d0
ij are the equilibrium bond lengths between atoms i and j and

θ0(jik) is the equilibrium angle between bonds ij and ik, which is a constant
in zincblende materials (θ0 ≈ 109.470). In the case of zincblende material,
the constants α and β are related to elastic constants of the material via
[90]

C11 + 2C12 =

√
3

4d0
(3α+ β)

C11 − C12 =

√
3

d0
β (29)

C44 =

√
3

4d0

4αβ

α+ β

Although there are three elastic constants and only two parameters α and
β, it is possible to choose α and β to fit the C’s of the most zincblende
materials within a few percent. To obtain the relaxed atomic structure,
one again starts with a reasonable guess for initial atomic structure and
then minimizes the expression (28) using some of the standard methods for
finding the local minimum of a function, such as the conjugate gradient
method. The atomic structure obtained can be used as an input to any of
the atomistic approaches previously described: charge patching, empirical
pseudopotentials and tight binding.

It has been pointed out in Sec. 2.1. that the charge density motifs used
in the charge patching method depend on the local environment of the atom.
In strained structures, bond lengths and angles change compared to the ideal
ones, which therefore represents the change in the environment that affects
the motifs. To include this effect, one introduces so called derivative motifs,
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defined as the change in the motif due to a particular bond length or angle
change. These motifs can also be extracted from small system calculations
on prototype structures with slightly changed bond lengths or angles. After
the motifs and derivative motifs are obtained, the total charge density is
constructed and the calculation of the electronic structure can be performed
as previously described.

It might seem at first sight that it is not necessary to introduce any
modifications to the empirical pseudopotential Hamiltonian to include the
effects of strain. However, it turns out that within such an approach it
would be difficult to correctly describe the dependence of the valence band
maximum state on the hydrostatic strain [91]. Therefore, a strain-dependent
term is introduced for the local part of the pseudopotential of the atom of
type α in the form:

vloc
α (r, e) = vloc

α (r, 0) [1 + γαTr(e)] , (30)

where γα is a fitting parameter and Tr(e) = exx +eyy +ezz is the trace of the
strain tensor. The SEPM strain-dependent Hamiltonian obtained this way
can be solved either by representing it in the basis of plane waves or bulk
Bloch bands. The extension of the unstrained cases to the strained cases for
the basis of plane waves is straightforward. On the other hand, this is not
true if bulk Bloch bands are used since the Bloch functions of the unrelaxed
system form a poor basis set for the relaxed system. Therefore one needs
to use the ”strained” linear combination of Bloch bands and the method is
then referred to as the SLCBB method. The reader is referred to Ref. [48]
for technical details of the implementation of the SLCBB method.

The natural way to introduce strain in tight-binding models is via the
dependence of hopping integrals on bond lengths and bond angles. The
dependence on bond lengths is modeled by scaling the Slater-Koster two-
center integrals [49] from which the hopping integrals are constructed as

V = V0

(

d0

d

)η

, (31)

which is a generalization [52, 92] of Harrison’s d−2 rule [56, 50]. In the
above equation V0 is the integral for equilibrium bond length d0 and V
the integral when the bond length is d. The change in bond angles in the
system leads to different relative orientation of orbitals of neighboring atoms
and consequently to a different hopping integral. This effect is naturally
included through the Slater-Koster [49] tables of matrix elements in terms
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of the two-center integrals and direction cosines. Furthermore, there is a
question whether the influence of strain on onsite energies should also be
included. This is indeed done in many recent works [93, 92, 94], although
different methods are used. Currently, there does not seem to exist a unique
and simple model for the inclusion of this dependence as for the hopping
integrals.

In k ·p models the effect of strain is included through the bulk deforma-
tion potential parameters that can be either measured or determined from
ab-initio calculations. In the case of 8-band Hamiltonian for zincblende
crystals the strain contribution to the Hamiltonian reads

Ĥs = (32)
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,

where

e = e11 + e22 + e33,

p = ave,

q = b

[

e33 −
1

2
(e11 + e22)

]

,

r =

√
3

2
b(e11 − e22) − ide12,

s = −d(e13 − ie23),

u =
1√
3
P0

3
∑

j=1

e3jkj ,

v =
1√
6
P0

3
∑

j=1

(e1j − ie2j)kj ,

where ac and av are the conduction and valence band hydrostatic deforma-
tion potentials, respectively, b and d are the shear deformation potentials.
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The strain tensor that enters the Hamiltonian (32) can be obtained either
from the VFF model (previously described) or from continuum mechanical
(CM) model.

In the CM model, the quantum dot structure is modelled by an elastic
classical continuum medium whose elastic energy is given by

W =
1

2

∑

ijkl

∫

d3rλijkleijekl, (33)

where λijkl is the elastic tensor relating the stress and strain tensor by
Hooke’s law

σij =
∑

kl

λijklekl. (34)

In the crystals with zincblende lattice the elastic tensor is of the form

λijkl = C12δijδkl + C44 (δikδjl + δilδjk) + Can

3
∑

p=1

δipδjpδkpδlp, (35)

where C12, C44 and Can = C11 − C12 − 2C44 are the elastic constants. The
finite element discretization and minimization of the functional (33) leads
to a system of linear equations that can be efficiently solved.

There have been several comparisons in the literature between the VFF
and CM models [66, 90, 95]. While certain differences have been obtained,
the results of the two models give overall agreement, as can be seen from a
comparison between strain distribution in a pyramidal InAs/GaAs quantum
dot from Ref. [90] that is given in Fig. 1. From the fundamental point of
view, the advantage of the VFF model is that it captures the atomistic
symmetry of the system, while CM models have a higher symmetry group.
From the computational point of view, the VFF model is more demanding
as the displacement of each atom is considered, in contrast to CM models
where a grid of the size of lattice constant or even larger may be used, leading
to a smaller number of variables to be handled. In several important cases,
there are analytical or nearly analytical solutions of the CM model [96, 97].
However, these advantages of the CM models are becoming less important
as modern computers can handle the VFF calculations quite easily.

The non-self-consistent methods described above do not allow for long
ranged charge redistributions and therefore neglect the effects such as piezo-
electricity where charge is moved due to strain. The piezoelectric potential
then has to be calculated independently and added as an additional poten-
tial. The components of piezoelectric polarization in a crystal of arbitrary
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symmetry are given as

Pi =
3

∑

k,l=1

ǫiklekl, (36)

where ǫikl are the piezoelectric constants of the material. In a crystal with
zincblende symmetry, the only nonzero components of ǫikl are

ǫ123 = ǫ132 = ǫ213 = ǫ231 = ǫ312 = ǫ321, (37)

The charges induced by piezoelectric polarization can then be calculated
and the additional piezoelectric potential is obtained from the solution of
Poisson equation. It has been recently realized that in addition to the first
order piezoelectric effect given by Eq. 36, second order piezoelectric effects
might be important as well [98].

3. MANY-BODY APPROACHES

The methods presented in Sec. 2 give a strategy for calculating the single
particle states. These can be very useful for calculating the optical prop-
erties, as will be demonstrated for example in Sec 4.3. Nevertheless, there
are cases when the many-body nature of electron-hole excitations should be
directly considered. The approaches along this line will be described in Sec.
3.

3.1 Time dependent density functional theory

Within the time dependent DFT (TDDFT) [99, 100], one solves the time
dependent Kohn-Sham equations:

i
∂

∂t
ψi(r, t) = [ − 1

2
∇2 + V (r, t)]ψi(r, t), (38)

where

ρ(r, t) =
M
∑

i=1

|ψi(r, t)|2 (39)

The potential V (r, t) should depend in principle on charge density in all
times before t. A widely used approximation is the adiabatic LDA, in which
it is assumed that V (r, t) depends only on ρ(r, t) and that the functional
form of this dependence is the same as in LDA in time independent DFT.
We will refer to this approximation as time dependent LDA (TDLDA).
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The TDLDA can be used to calculate the optical absorption spectrum by
adding the external electromagnetic field perturbation potential to Eq. 38
and solving the equations by explicit integration in time [101]. Another
approach is to assume that the perturbation is small and use the linear
response theory. The exciton energy can then be found from the eigenvalue
problem

∑

jl

[(ǫi − ǫk)δijδkl + (fi − fk)Kik,jl(ω)]Cjl = ωCik, (40)

where ǫi and ǫk are the LDA ground state Kohn-Sham eigen energies, and
fi and fk are the occupation number of Kohn-Sham eigen states ψi and ψk.
Within TDLDA, Kik,jl becomes independent of ω and is given as:

Kik,jl =

∫ ∫

dr1dr2ψi(r1)ψk(r1)[
1

|r1 − r2|

+δ(r1 − r2)
∂µLDA

xc (ρ(r1))

∂ρ(r1)
]ψj(r2)ψl(r2), (41)

where µLDA
xc (ρ) is the LDA exchange-correlation potential. The first term

in Eq. 41 is the exchange interaction, while the second can be called the
screened Coulomb interaction. The justification of this assignment would
require a comparison with equations from other approaches, such as the
configuration interaction and GW + Bethe Salpeter equation. It might also
seem surprising that the screened Coulomb interaction is not a nonlocal
integral between r1 and r2. This is because in the LDA, the exchange-
correlation term is a local functional of charge density.

TDLDA appears to work quite well for optical spectra of small clus-
ters and molecules. The results of TDLDA can then agree quite well with
experimental measurements, as shown for example for the case of SiH4 in
[102]. These results are significantly improved compared to bare LDA re-
sults, which is due to exchange interaction in Eq. 40, which can be quite
strong in such small systems. The screened Coulomb interaction in Eq. 40,
however, does not play a significant role then, as also shown in [102].

On the other hand the TDLDA is not as accurate for larger systems.
For bulk system, it is known that [103, 104] the TDLDA band gap will be
the same as the LDA band gap. The TDLDA does not provide a better
bulk optical absorption spectrum than the LDA, as shown in [102]. The
origin of these problems is the screened Coulomb interaction in Eq. 40,
which gives a significant contribution then. However, such diagonal form of
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screened Coulomb interaction is not able to correctly describe its long range
behavior.

Density functionals other than the LDA can also be used in conjunc-
tion with TDDFT. A very popular approach is to use the hybrid B3LYP
functional [105]. Within the B3LYP approach, the total energy is modeled
as a linear combination of the exact Hartree-Fock exchange with local and
gradient-corrected exchange and correlation terms. The coefficients in the
linear combination were chosen to fit the properties of many small molecules.
The B3LYP method gives accurate band gaps for various bulk crystals [106].
Since it contains the explicit exchange integral, it introduces the long range
Coulomb interaction in Eq. 40. Therefore, the TDDFT-B3LYP can over-
come the two difficulties of TDLDA previously discussed.

3.2 Configuration interaction method

When the single particle states are obtained, one can form many body
excitations by creating Slater determinants out of these single particle states.
One can then diagonalize the many body Hamiltonian in the Hilbert space
formed from a restricted set of such determinants. This approach is called
the configuration interaction (CI) method. When one is interested in exci-
tons, the wavefunction is assumed as

Ψ =
Nv
∑

v=1

Nc
∑

c=1

Cv,cΦv,c, (42)

where Φv,c is the Slater determinant when the electron from the valence band
state v is excited to the conduction band state c. The eigenvalue problem
of the Hamiltonian then reads
∑

v′c′

Hvc,v′c′Cv′c′ =
∑

v′c′

[(Ev − Ec)δv,v′δc,c′ +Kvc,v′c′ − Jvc,v′c′ ]Cv′c′ = ECvc,

(43)
where Ev and Ec are the single particle eigen energies, E is the exciton
energy and Kvc,v′c′ and Jvc,v′c′ are the exchange and Coulomb interactions
respectively:

Kvc,v′c′ =

∫ ∫

ψc′(r1)ψ
∗
v′(r1)ψv(r2)ψ

∗
c (r2)

ǭ(r1, r2)|r1 − r2|
dr1dr2 (44)

Jvc,v′c′ =

∫ ∫

ψv(r1)ψ
∗
v′(r1)ψc′(r2)ψ

∗
c (r2)

ǭ(r1, r2)|r1 − r2|
dr1dr2 (45)

26



The effective dielectric screening used in Eqs. 44 and 45 is of the form

1

ǭ(r1, r2)|r1 − r2|
=

∫

ǫ−1
bulk(r1, r)

1

|r − r2|
dr, (46)

where ǫ−1
bulk(r1, r) is the bulk inverse dielectric function that differs from the

one of the quantum dot nanostructure, which also contains the surface po-
larization potential P discussed in Sec. 2. The use of bulk inverse dielectric
function is in line with the fact that the single particle energies Ec and Ev

are obtained from the Schrödinger’s equation that does not contain the sur-
face polarization term. If the surface polarization term is used in the single
particle equation, than the full inverse dielectric function should be used
and the surface polarization terms will roughly cancel out.

There are arguments that the exchange interaction Kvc,v′c′ should not
be screened, that come from the two particle Green’s function construction,
where screening of the exchange term would cause double counting [107].
Nevertheless, in practice, it is found that the exchange consists of a long
range term, that should be unscreened, and a short range term [108] that
should be screened by the bulk dielectric function [109, 110]. The effec-
tive dielectric function ǭ(r1, r2) used in Eq. 44 incorporates this because
ǭ(r1, r2) → 1 for |r1 − r2| → 0. The seeming contradiction to the Green’s
function argument can be resolved by realizing that if only a limited con-
figuration space is used in Eq. 43, the effect of other unused configurations
can be included in the exchange screening term [107].

The CI equation 43 has the same form as the corresponding equation in
TDLDA (Eq.40), with the difference in the expressions for the exchange and
the Coulomb integrals. On top of a single particle calculation, the CI method
was used to calculate very large systems, such as pyramidal quantum dots
with near one million atoms [111]. It was also used to calculate many body
excitations, such as multiexcitons, few electron excitations and to study
Auger effects [112]. All these calculations are made possible by selecting a
limited window of single-particle states used in these configurations. It is
difficult or impossible to study such systems using TDLDA or GW+Bethe-
Salpeter equation. One should nevertheless be cautious about the models
used for screening in these multi-particle excitations.

3.3 GW and Bethe-Salpeter equation approach

Within this approach, one first calculates the quasiparticle eigenenergies,
which is somewhat analogous to single particle calculations in Sec. 2. These
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are then used to solve the Bethe-Salpeter equation (BSE) for excitons, which
is in some sense similar to CI equations of the previous section.

A quasiparticle is defined as the pole in frequency space in the single
particle Green’s function:

G(rt, r′t′) = −i〈M |T ψ̂(rt)ψ̂†(r′t′)|M〉 (47)

where ψ̂(rt) is the particle creation operator, |M〉 is the M particle ground
state, and T is the time-ordering operator. Quasiparticle energies corre-
spond to energies for adding or removing one electron from the system [113].
Within the GW approximation [114] the appropriate single-particle equation
reads:

[ − 1

2
∇2 +

∑

atom

v̂bare(r − Ratom) +

∫

ρ(r′)

|r − r′|d
3r′]ψi(r)

+

∫

Σ(r, r′; ǫi)ψi(r
′)dr′ = ǫiψ(r), (48)

where

Σ(r, r′, ω) = −
∑

k

ψk(r)ψ
∗
k(r

′)[fkW (r, r′, ǫk −ω)+
1

π

∫

ImW (r, r′, ω′)

ω − ǫk − ω′ + iδ
dω′]

(49)
is the self-energy potential that replaces the LDA exchange correlation po-
tential of LDA single particle equations.

W (r, r′, ω) =

∫

ǫ−1(r, r1, ω)
1

|r1 − r′|dr1 (50)

is the dynamically screened interaction, where ǫ−1(r, r1, ω) is the inverse
dielectric function.

While Eqs. 48 and 49 should in principle be solved self-consistently, one
usually replaces the self-energy term with its expectation value with respect
to the LDA Kohn-Sham wavefunctions 〈ψk|Σ|ψk〉, which constitutes the
zero-th order approximation of the GW procedure. It has been shown that
the self-consistent calculations [115, 116, 117, 118, 119] make the spectral
properties worse. Such calculations are performed with the use of pseudopo-
tentials. It is possible that self-consistency will not make the results worse
if all-electron calculation is performed.

The two particle Green’s function defined as

G(r1t1, r2t2, r
′
1t

′
1, r

′
2t

′
2) = −〈M |Tψ(r1t1)ψ(r2t2)ψ

†(r′2, t
′
2)ψ

†(r′1, t
′
1)|M〉

(51)
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contains the information about the exciton energies. These can be retrieved
by taking t1 = t′1 + 0−, t2 = t′2 + 0− and transforming to frequency space
to obtain (in the condensed notation) G2(ω), whose poles are the exciton
energies. The Dyson equation for G2(ω) reads [120, 113]

G2(ω) = G
(0)
2 (ω) +G2

2(0)(ω)K ′(ω)G2(ω) (52)

where G
(0)
2 (ω) is the non-interacting two particle Green’s function, and

K ′(ω) is an electron-hole interaction kernel. Equation 52 for the electron-
hole pair is called the Bethe-Salpeter equation [120]. It can be solved by
expanding the exciton wavefunction as

|M,S〉 =
∑

v

∑

c

Cvcâ
†
v b̂

†
c|M, 0〉. (53)

The equation for Cvc coefficients are then given as

(ǫc − ǫv)Cvc +
∑

v′c′

(Kvc,v′c′ − Jvc,v′c′)Cv′c′ = ΩSCvc (54)

where ǫn, ǫm are the quasi-particle eigen energies obtained from Eq. 48, and
ΩS is the exciton energy. The Kvc,v′c′ is the same as in Eq. 44 without the
screening ǭ(r1, r2). The Jvc,v′c′ on the other hand reads

Jvc,v′c′ =

∫

drdr′ψ∗
c (r)ψc′(r)ψv(r

′)ψ∗
v′(r′)

i

2π

∫

dωe−iω0+

W (r, r′, ω)

×[(ΩS − ω − (ǫc′ − ǫv) + i0+)−1 + (ΩS + ω − (ǫc − ǫv′) + i0+)−1] (55)

where W (r, r′, ω) is the screened Coulomb interaction given by Eq. 50.
GW + BSE approach is thought to be one of the most reliable methods

for the calculation of the optical absorption spectra and excited state elec-
tronic structures. It has been used to calculate small molecules and bulk
crystals. Unfortunately, its use for the larger systems is hindered by the
significant computational cost.

Excellent agreement with experimental results was obtained for the op-
tical absorption spectrum of bulk Si calculated using the GW + BSE ap-
proach [121]. Within GW + BSE, the lower energy peak originating from
the excitonic binding effect was obtained for the first time. In contrast, pre-
vious LDA and TDLDA results were unable to predict this peak due to the
inadequacy of the local approximation for the Coulomb interaction.

The BSE (Eq. 54) is formally the same as the linear response TDLDA
(Eq. 40) and CI (Eq. 43), except for the meanings of single-particle energies
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and the exchange and screened Coulomb interaction. In the GW + BSE
approach, the quasiparticle electron (hole) energies are equal to the total
energy difference for adding (removing) one electron from the system and
include the surface polarization term P (r) from Eq. 1. On the other hand, in
the CI approach, the single particle states are obtained without including the
P (r) term. The single particle states then do not correspond to total energy
differences for adding or removing one electron. A surface polarization term
needs to be added to relate them to ionization energies or electron affinities
[122]. In the linear response TDLDA Eq. 40, the single particle energy is the
Kohn-Sham LDA eigenenergy. It does not contain the surface polarization
term, just like the single particle energies in the CI approach. A difference
between the TDLDA and CI approach is that TDLDA contains LDA band
gap error, while in the CI approach the single particle states can be found
for example by EPM or SEPM that correct the LDA band gap error.

The polarization term in the GW quasiparticle eigenenergy cancels out
a term in J in Eq. 54 because the same surface polarization term exists in
W (r, r′, ω) in Eq. 55. This cancellation corresponds to the cancellation of
the PM (r1, r2) and P (r1), P (r2) terms in Eq. 2 of the classical phenomeno-
logical analysis. Delerue, Lannoo and Allan [123] have shown numerically
that the Coulomb correction term cancels the polarization term in the self-
energy of the quasi-particle eigenenergy. Consequently the results of the GW
BSE are expected to be similar to the results of CI where J is screened by
the bulk dielectric function. In the TDLDA, where the Coulomb interaction
is local, it is also screened by the bulk dielectric function, in line with the
fact the LDA single particle states used in Eq. 40 do not include the surface
polarization term. The different cancellation schemes in TDLDA, CI and
GW BSE (Eqs. 40, 43 and 54) can be illustrated by comparing the calcu-
lated absorption spectra in these methods with the one obtained from single
particle energies. It was shown in [124] that the BSE absorption spectrum
of small clusters of SinHm is red shifted from the calculated single particle
spectrum, which is mostly due to negative surface polarization energies in
the Coulomb interaction J . On the other hand it was shown in [102], that
the TDLDA spectrum is blue shifted from the single particle LDA spec-
trum. There is no surface polarization in J or single particle energies then,
thus the exchange interaction dominates the spectrum shift. However, if
total LDA energy differences for adding or removing an electron are used in
Eq.40, then the surface polarization must be considered [125] and Coulomb
interaction cannot be calculated from Eqs. 45 and 46. The above discussed
cancellations are only good for spherical quantum dots. For quantum rods,
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wires and the nanostructures of other shapes, the GW BSE-like approach
should be used. In the CI approach, P (r) should be added to the single
particle energy, while the full nanosystem inverse dielectric function (not
the bulk one) should be used for ǭ(r1, r2) in Eqs. 44 and 45.

3.4 Quantum Monte Carlo Methods

Within the quantum Monte Carlo (QMC) method [126], the whole sys-
tem is described by a many-body wavefunction and the many body Schrödinger
equation is solved using some of the Monte Carlo techniques such as varia-
tional quantum Monte Carlo method [127, 128] (VMC) or diffusion quantum
Monte Carlo method [129, 130] (DMC).

Within the VMC, the variational form of the many body wavefunction
Ψ(X) is assumed as a Slater determinant multiplied by a Jastrow term:

Ψ(X) = D↑(R)D↓(R) exp [
M
∑

i=1

χ(ri) −
M
∑

i<j

u(|ri − rj |)] (56)

where X = {ri, si} for i = 1,M . The Slater determinant D is usually
constructed from single particle LDA or Hartree Fock wavefunctions, while
parameterized forms are used to express χ and u. The total energy of the
system is found by minimizing the expectation value of the many body
Hamiltonian H, given as

E = 〈Ψ|H|Ψ〉/〈Ψ|Ψ〉.

The last expression can be rewritten as

E =

∫

Ψ(X)HΨ(X)dX
∫

|Ψ(X)|2dX =

∫

[HΨ(X)
Ψ(X) ]|Ψ(X)|2dX
∫

|Ψ(X)|2dX (57)

The last integral can be viewed as the average value of the quantity HΨ(X)
Ψ(X)

distributed in multidimensional space with a probability |Ψ(X)|2. It can be
found using the Metropolis algorithm. In this algorithm, one simulates the
path of the walker in the multidimensional space. The jump of the walker
from X to X′ is accepted if µ = |Ψ(X′)|2/|Ψ(X)|2 > 1 and accepted with

probability µ if µ < 1. The average value of HΨ(X)
Ψ(X) along the path of the

walker gives E in Eq. 57.
In the DMC, one treats the many body imaginary time Schrödinger equa-

tion as the classical diffusion equation [129, 130]. In this method, the many
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body wave function (not its square) corresponds to the equilibrium distri-
bution of Monte Carlo walkers. However, for fermion system, antisymmetry
is required for the many body wavefunction. This causes a sign problem,
which is usually approximately solved by a fixed nodal approximation where
an auxiliary wavefunction is used to define the fixed nodal hypersurface for
the DMC wavefunction. Usually, the VMC wavefunction of Eq. 56 is used
as this auxiliary wavefunction.

With the use of pseudopotentials [131], both VMC and DMC methods
have been used for systems up to a dozen atoms. Williamson et al [132]
showed that QMC methods can be used for exciton energies. This is done by
replacing one single particle valence band wave function with a conduction
band wave function in the Slater determinant. The DMC with a nodal
hypersurface defined by this new Slater determinant is performed then, and
it fully takes into account the resulting correlation effects. This approach
gives the Si band structure that agrees well with the experiments. QMC is
one of the most reliable methods for small system calculations.

The development of a linear scaling QMC method [133] extended its ap-
plicability from a dozen atoms to a few hundred atoms. Within the linear
scaling QMC method, Slater determinants are represented in a basis of lo-
calized Wannier functions. This makes the Slater determinant sparse and
therefore the calculation time is proportional to the size N , instead of N3

in the old scheme. Consequently, this allows the QMC calculation of a few
hundred atoms, and makes possible the use of the QMC method for small
quantum dots [134].

4. APPLICATION TO DIFFERENT PHYSICAL EFFECTS: some

examples

4.1 Electron and hole wave functions

The shape of the single particle wave functions and their energies deter-
mine many physical properties of quantum dots. This section is therefore
devoted to the analysis of electron and hole wave functions. The wave func-
tions of the lowest four states in the conduction band and top four states
in the valence band of a pyramidal [110]-faceted InAs/GaAs quantum dot
are presented in Fig. 2. The results presented in Fig. 2 were obtained us-
ing the empirical pseudopotential method, including the effect of spin-orbit
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interaction.
The lowest conduction state is an s-like state, while the next two con-

duction states are p-like states oriented in the directions of base diagonals,
with nodal planes perpendicular to these directions. These are followed by
d-like states. Due to lateral dimension larger than the quantum dot height,
none of the nodal planes is parallel to the pyramid base. There are therefore
only two p-like states, in contrast to spherical quantum dots where there are
three p-like states.

The two p-states are relatively close in energy and their splitting is caused
by several effects. To discuss each of these effects, we first assume that the
structure is unstrained.

(1) In the simplest single band effective mass model these states are
degenerate and can be split if the base of the pyramid acquires a shape
different than the square. The same is the case for the 4-band k · p model
(i.e. 8-band model without spin-orbit effects). Addition of spin-orbit effects
to 4-band k · p splits these levels by a small (less than 1 meV) amount
[77, 135]. Atomistic methods predict the correct symmetry of the system
and split the p-states, as well as k · p models with larger number of bands
(14 for example).

(2) When strain (without piezoelectricity) is included in the k ·p model
within CM approach, it cannot cause the splitting, while the VFF model,
due to its atomistic nature, splits the p-states.

(3) Piezoelectricity added to any of the models also causes the splitting
of the p-states.

The splitting of the p-states is therefore caused by the shape anisotropy,
spin-orbit effect, atomistic (a)symmetry, strain and piezoelectricity. It is
amazing that a single quantity is determined by such a large number of
effects. Unfortunately in a given quantum dot, all these effects are present
and cannot be probed separately.

The conduction band states are formed essentially of a single envelope
function and therefore these can be classified as being s, p, d-like. On the
other hand, the band mixing of the valence states is much stronger and
such a simple classification is not possible. The valence band functions
actually have no nodal planes. (This becomes obvious from Fig. 2, when
the isosurface values are additionally reduced for VBM-1 and VBM-2). The
approximation of using a single heavy hole band to describe the valence
state, which is often used in quantum wells is therefore not applicable to
quantum dots due to stronger heavy and light hole mixing.

As the dot size is reduced, the valence band energies become lower and
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the conduction band energies higher. The bound states are then less con-
fined and the effective energy gap increases. With the reduction in quantum
dot dimensions some bound states become mixed with wetting layer or con-
tinuum states and the number of truly bound states decreases.

4.2 Intraband optical processes in embedded quantum dots

Most of the semiconductor optoelectronic devices utilize transitions be-
tween the conduction band states and the valence band states. The operat-
ing wavelength of these devices is mainly determined by the bandgap of the
materials employed and is therefore limited to the near-infrared and visible
part of the spectrum. However, if one wishes to access longer wavelengths,
a different approach is necessary, i.e. the transitions within the same band
have to be used. These transitions are called intraband transitions. Intra-
band optical transitions in bulk are not allowed and therefore low dimen-
sional nanostructures have to be used. Therefore, in the last two decades,
semiconductor nanostructures, such as quantum wells, wires and dots have
been recognized as sources and detectors of electromagnetic radiation in the
mid- and far-infrared region of the spectrum.

When the use of nanostructures as detectors is concerned, several limita-
tions of quantum well infrared photodetectors (QWIPs) have motivated the
development of quantum dot infrared photodetectors (QDIPs). The main
origin of the undesirable dark current in QWIPs is thermal excitation (due
to interaction with phonons) of carriers from the ground state to contin-
uum states. The discrete electronic spectrum of quantum dots as opposed
to continuum spectrum of quantum wells significantly reduces the phase
space for such processes and therefore reduces the dark current. Higher
operating temperatures of QDIPs are therefore expected. Due to optical
selection rules, QWIPs based on intersubband transitions in the conduc-
tion band interact only with radiation having the polarization vector in the
growth direction. This is not the case in quantum dots since these are three
dimensional objects where the corresponding selection rules are different.

For the QDIP applications, it is essential to understand the quantum
dot absorption spectrum. The simplest model which is sufficient to qual-
itatively understand the quantum dot intraband absorption spectrum is
the parabolic dot model, where the potential is assumed in a separable
form V (r) = V1(x, y) + V2(z), where V1(x, y) = 1

2m
∗ω2(x2 + y2) is the

potential of a two dimensional harmonic oscillator, and V2(z) is the po-
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tential of a quantum well confining the electrons in the z-direction. The
solutions are of the form Ψ(r) = hnx(x)hny(y)ψnz(z), where hn(t) is the
wavefunction of an one dimensional harmonic oscillator and ψnz(z) are so-
lutions of the one dimensional Schrödinger equation with potential V2(z)
(corresponding to energies εnz). The eigenenergies are then of the form
E(nx, ny, nz) = h̄ω(nx + ny + 1) + εnz . The factor h̄ω corresponds to the
transition energy from the ground to first excited state and for modelling re-
alistic quantum dots it should be set to h̄ω ∼ 40−70meV. Typical quantum
dots are wide in the xy-plane (diameters of the order of 20 nm and more)
and have very small height (of the order of 3-7 nm) in the z−direction, there-
fore the effective potential well representing the z−direction confinement is
narrow (see Fig. 3). In a typical case therefore ε1 − ε0 is of the order of at
least 100 meV.

The optical absorption matrix elements on the transitions between states
are proportional to the matrix elements of coordinate operators, therefore
by calculating the latter, one obtains the following selection rules on the
transitions between states:

• ∆nx = ±1, ∆ny = 0, ∆nz = 0, for x−polarized radiation,

• ∆ny = ±1, ∆nx = 0, ∆nz = 0, for y−polarized radiation,

• ∆nx = 0, ∆ny = 0, for z−polarized radiation.

The transitions from the ground state are of primary importance for QDIPs.
From the selection rules obtained, one concludes that only the transition to
a pair of degenerate first excited states is allowed for in-plane polarized
radiation, while in the case of z−polarized radiation, only the transitions to
higher excited states are allowed, as demonstrated in Fig. 3.

Although the model presented considers the quantum dot bandstructure
in a very simplified manner, it is excellent for understanding the results of
more realistic models. The strict selection rules from this model are then
relaxed and strictly forbidden transitions become weakly allowed. Never-
theless, qualitatively, the absorption spectrum retains the same features as
in this model.

The absorption spectrum obtained by the 8-band k ·p model for a quan-
tum dot of conical shape with the diameter D = 25nm and height h = 7nm,
is presented in Fig. 4. The dimensions were chosen to approximately match
those reported for quantum dots in a QDIP structure in Ref. [136]. The
optical absorption spectrum in the case of z−polarized radiation is shown
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in Fig. 4a. The experimental intraband photocurrent spectrum exhibits the
main peak at 175 meV and a much smaller peak at 115 meV, in excel-
lent agreement with the results obtained for z−polarized incident radiation
where the corresponding peaks occur at 179 meV and 114 meV, respectively.
The corresponding absorption spectrum for in-plane polarized incident ra-
diation is presented in the inset of Fig. 4a. There is a single peak in the
spectrum which is due to the transition from the ground state to a pair of
nearly degenerate first excited states (see Fig. 4b).

The results presented and other similar calculations suggest that the in-
plane polarized radiation causes non-negligible transitions only between the
ground and first excited state, these being located in the region 40–80 meV
in the far-infrared. On the other hand, z−polarized radiation causes the
transition in the ∼ 100− 300meV region in the mid-infrared. The best way
to understand the origin of such behavior is via a simplified parabolic model
presented. Such behavior can be altered only if the dot dimension in the
z−direction becomes comparable to the in-plane dimensions.

4.3 Size dependence of the band gap in colloidal quantum dots

The size dependence of the bandgap is the most prominent effect of quan-
tum confinement in semiconductor nanostructures. The bandgap increases
as the nanostructure size decreases. Many of quantum dot applications rely
on the size dependence of the optical properties. Therefore studying the
size dependence of the band gap is one of the most important topics in
semiconductor nanocrystal research.

According to a simple effective-mass approximation model, the band gap
increase of spherical quantum dots from the bulk value is

∆Eg =
2h̄2π2

m∗d2
, (58)

where d is the quantum dot diameter and

1

m∗ =
1

m∗
e

+
1

m∗
h

, (59)

with m∗
e and m∗

h being the electron and hole effective masses.
The experiments usually measure the optical gap of a quantum dot.

Therefore, in addition to the difference in single-particle energies, one has
to include the interaction between created electron and hole, in order to
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calculate the optical gap. One simple approach to do this is to calculate the
exciton energy by including the electron-hole interaction on top of the single-
particle gap. This procedure ignores the electron-hole exchange interaction
and possible correlation effects. However, in the strong confinement regime,
which is present in most colloidal nanocrystals and embedded quantum dots,
these effects are very small. Under this approximation, the exciton energy
can be expressed as

Eex = ǫc − ǫv − EC
cv, (60)

where ǫc and ǫv are the single-particle CBM and VBM energies and EC
cv is

the electron-hole Coulomb energy calculated as

EC
cv =

∫ ∫

dr1dr2
|ψc(r1)|2|ψv(r2)|2
ǫ(r1 − r2)|r1 − r2|

, (61)

where ψc(r) and ψv(r) are the electron and hole wave functions and ǫ(r1−r2)
is a distance dependent screening dielectric function, which can be modeled
as described in [32].

The dependence of the calculated optical gap on CdSe nanocrystal size
is presented in Fig. 5. A fit of the theoretical results to the

Eg = a · d−α

dependence yields the values quite different from the simple d−2 law pre-
dicted from the effective mass approach. In the case of CdSe α = 1.18.
The α parameter is material dependent and its values for III-V and II-VI
semiconductors typically fall in the range 1.1 – 1.7.

4.4 Excitons

In the previous section, we have presented the exciton calculations based
on a simple, but useful approach. For the calculation of excitons the methods
of Sec. 3 must be used in principle. The results of these methods are
shown in Fig. 6 for H passivated Si quantum dots [137]. The DMC method
and GW-BSE method produce almost the same band gap for the smallest
quantum dots. The DMC result is about 1 eV above all the other results for
somewhat larger quantum dots with the diameter up to 1.6 nm. It remains
to be seen how accurate is this DMC result, for example when compared
with well controlled experiments (perhaps for other material quantum dots
like CdSe). The TDLDA method gives almost the same results as the LDA
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Kohn Sham energy difference. This suggests that both the exchange and
Coulomb interaction in the TDLDA results have a very small contribution.
Besides TDLDA, TDDFT-B3LYP was used in Ref.[137] and Ref. [138]. The
TDDFT-B3LYP band gap is below the DMC result, especially for relatively
large quantum dots. However, in the work of Ref. [138], it was shown that
for small molecules, the TDDFT-B3LYP result agrees with the MR-MP2
quantum chemistry calculations. The TB and EPM results in Fig. 6 can
be considered as the lowest order results of the CI equation 43, where only
the zero order screened Coulomb interactions between the VBM and CBM
states are taken into account. These agree well with each other. However,
they are between the TDLDA and TDDFT-B3LYP results.

To summarize these results, the DMC result is above all the other meth-
ods for d = 1.5 nm Si quantum dots. The LDA and TDLDA have the lowest
band gap, followed by the TB and EPM limited CI results and the TDDFT-
B3LYP results. For very small quantum dots, the DMC results agree well
with the GW-BSE results.

4.5 Auger effects

Auger effects play a crucial role in carrier dynamics in nanostructures
when both types of carriers (electrons and holes) are present. They become
important in particular in quantum dots which have discrete electronic lev-
els, which implies that the competing phonon-assisted relaxation processes
are strongly reduced. Different types of Auger processes are schematically
illustrated in Fig. 7.

According to Fermi’s golden rule, the formula for the Auger rate is given
as

Wi =
2π

h̄

∑

n

|〈i|∆H|fn〉|2δ(Efn
− Ei), (62)

where |i〉 and |fn〉 are the initial and final Auger states, Ei and Efn
their

energies and ∆H is the Coulomb interaction. At a temperature T 6= 0
the Boltzmann average over the initial states has to be taken. It would
seem at first sight that the discreteness of quantum dot energy levels and
the requirement for energy conservation in the process, would not allow for
efficient Auger processes. However, other excitations, such as phonons, can
be involved as well, and help to satisfy the energy conservation. Their effect
can then be phenomenologically modeled by Lorentzian broadening of the
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delta function in Fermi’s golden rule expression as

δ(Efn
− Ei) →

Γ

2π

1

(Efn
− Ei)2 + (Γ/2)2

. (63)

The most important step in the electron cooling process involves the
transition of the electron from the p level (ep) to the ground s electronic
state (es). This process is mediated by a transition of the hole from hs to hn.
The calculated Auger lifetime for this process is shown in Fig. 8. Its value is
of the order of 0.1-0.5 ps, in agreement with experimental results [139]. This
result suggests that Auger processes are sufficient to explain electron cooling
in quantum dots, although other mechanisms are not necessarily ruled out.

The same process can take place in the presence of an electron and a hole
that act only as spectators. It is very interesting that the electron lifetime
increases by an order of magnitude in those cases, as demonstrated in Fig.
8.

4.6 Electron-phonon interaction

The theory and results presented so far covered only the stationary elec-
tronic structure of quantum dots when atoms are in their equilibrium posi-
tions. However, at finite temperatures the vibrations of atoms around their
equilibrium positions (phonons) create additional potential that perturbs
otherwise stationary electronic states and causes transitions among them.

Phonons in quantum dots can be treated at various levels of approxi-
mations. The approximation that is often used for large quantum dots is
that the phonons are the same as in bulk material. The strongest cou-
pling between electrons and phonons in polar crystals is polar coupling to
longitudinal optical (LO) phonons, while deformation potential coupling to
longitudinal acoustic (LA) phonons might also sometimes be important.

In order to calculate the transition rates among different electronic states
due to the interaction with LO phonons, it is tempting to apply Fermi’s
Golden rule, which is a good approximation in quantum wells, for exam-
ple [140]. However, its direct application to quantum dots leads to the
result that transition rates are zero unless two levels are separated by one
LO phonon energy exactly [141]. Such an approach treats the electron and
phonon systems separately with their interaction being only a perturba-
tion. It is currently known that electrons and phonons in quantum dots
form coupled entities – polarons. Polarons in self-assembled quantum dots
have so far been evidenced experimentally by optical means in the intraband
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magneto-optical spectrum [142, 143], magnetophotoluminescence spectrum
[144] and by Raman scattering [145] and it has been suggested theoretically
that they could have transport signatures as well [146]. Polarons are usually
evidenced by anticrossing of electron energy levels when these are gradually
changed, such as for example by magnetic field. We illustrate this here by
a numerical experiment where the energies of the pair of first excited states
are shifted in opposite directions by the same amount ∆E, which is varied.
The polaron states were calculated by direct diagonalization of the electron-
phonon interaction Hamiltonian. The polaron energy levels that contain a
contribution from at least one of the electronic states larger than 10% are
shown by circles in Fig. 9. Anticrossing features in polaron spectrum are
clearly visible.

There is therefore a widespread thought that carrier relaxation in quan-
tum dots should be treated by considering the carriers as polarons. The
polaron lifetime is then determined by anharmonic decay of an LO phonon
into two low energy phonons [147, 142, 148, 149, 150]. It is thought that
the physical process responsible for that decay process is either the decay to
two LA phonons [151, 147] or to one acoustic and one optical phonon [150].
Within such assumptions, the polaron lifetime is in the case of a two level
system given by [147]

W =
Γ

h̄
−

√

2(R−X)

h̄
, (64)

where R =
√
X2 + Y 2, X = g2 + (∆2 − Γ2)/4, Y = Γ∆/2, ∆ = Ei − Ef −

h̄ωLO, g is the electron-phonon coupling strength, Γ/h̄ the phonon decay
rate, Ei and Ef the energies of the single particle states. Eq. (64) has been
used in several occasions to fit the experimental results on intraband carrier
dynamics in quantum dots [148, 152].

The approximation of bulk phonon modes certainly fails in small quan-
tum dots. In that case, one should use the atomistic description of phonons.
To calculate the phonon frequencies and displacements, one needs a force
field which describes the vibrations of atoms around their equilibrium po-
sitions. VFF, for example, can be used for that purpose. To calculate the
electron-phonon coupling, one needs to be able to calculate the change in
single-particle Hamiltonian due to atomic displacements. Any of the single-
particle methods described in Sec. 2 can in principle be used for that pur-
pose. However, if some of the empirical methods is used, one should be sure
that the fitted parameters are appropriate for this purpose, as well. Due to
large number of atoms and consequently phonon modes, such calculations
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could be quite expensive, nevertheless they are sometimes practiced. For
example, Delerue, Allan and Lannoo [153] calculated the phonon modes in
a Si nanocrystal using a valence force field model, and the coupling between
the phonon modes and the transition electronic states explicitly using the
Harrison’s rule [56] for changes of TB parameters following the atomic dis-
placements. Most recently, Chelikowsky et al. [154] calculated the phonons
of Si quantum dots using direct DFT calculations.

5. CONCLUSIONS

We have given an overview of theoretical methods used for electronic
structure calculations in quantum dots. We have emphasized the weaknesses
and strengths of each of the methods. An interested reader can therefore
choose the method of choice depending on the desired application, the degree
of accuracy required and the available computational resources.

For the treatment of single-particle states, the simplest effective mass
method is excellent for pedagogical purposes to illustrate the effect of quan-
tum confinement. It is often even used in research when one wishes to
qualitatively take into account the effect of quantum confinement and the
details of the electronic structure are not essential. The multiband k · p
method gives a more quantitative description, especially for large quantum
dots. It is widely used in modeling of optical and transport processes in op-
toelectronic devices. Atomistic methods give a very detailed description of
quantum dot electronic structure and are clearly the best choice in research
for understanding the new physical effects.

For the treatment of excitations in quantum dots, Sec. 3 gives an
overview of the methods that can be applied in principle. For applica-
tion of these methods to quantum dots, linear scaling of the method is an
essential requirement. CI approach satisfies this but it is based on classical
model derivations and physical intuitions. QMC also appears to be promis-
ing. However, the method is relatively new, when the calculations of excited
states and large systems are concerned. A deeper understanding of the ac-
curacy, i.e. the quality of the variational form of the wave function or the
nodal hypersurfaces, is required. When GW BSE approach is concerned, it
is a challenge to make it scalable to larger systems.
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Figure 1: Strain profiles of InAs/GaAs square-based pyramidal quantum
dots and the differences along the z-direction through the pyramidal tip. The
differences between the continuum elasticity (CE) and atomistic elasticity
(AE) are given on the right-hand side. The discrepancy is the largest around
the interfaces, while the strains in the barrier (GaAs substrate and capping
layer) agree well within 0.5%. A significant difference is also found inside the
quantum dot where the InAs experience large compressive strains at about
7% due to the lattice mismatch. Reprinted figure with permission from Ref.
[90] C. Pryor, J. Kim, L. W. Wang and A. Zunger, J. Appl. Phys. 83, 2548
(1998). Copyright (1998) by the American Institute of Physics.
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Figure 2: Isosurface plots of the charge densities of the conduction and
valence band states for the square based InAs/GaAs pyramids with the
base b = 20a, where a is the lattice constant of bulk zincblende GaAs. The
charge density equals the wave-function square, including the spin-up and
-down components. The level values of the green and blue isosurfaces equal
0.25 and 0.75 of the maximum charge density, respectively. Reprinted figure
with permission from [46], L. W. Wang, J. Kim and A. Zunger, Phys. Rev.
B 59, 5678 (1999). Copyright (1999) by the American Physical Society.
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in−plane polarized

z−polarized

Figure 3: Scheme of energy levels and allowed optical transitions in a
parabolic quantum dot model with infinite potential barriers. Only the
levels with nx + ny ≤ 2 and nz ≤ 2 are shown.
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Figure 4: a) The intraband optical absorption spectrum for a quantum dot
of conical shape with the diameter D = 25nm and height h = 7nm for
the case of z−polarized radiation. The corresponding spectrum for in-plane
polarized radiation is shown in the inset. b) The scheme of energy levels
and the most relevant transitions. The quantum number of total quasi-
angular momentum mf which is a good quantum number in the case of
axially symmetric quantum dots within the axial approximation of 8-band
k · p model is also indicated.
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Figure 5: Comparison of the exciton energy shift from its bulk value of
CdSe QDs between experiment, charge patching method (with band gap
corrected pseudopotentials) (LDA+C), and SEPM calculations. Coulomb
energies are considered in this calculation. Experimental data is from Ref.
[155]. Reprinted figure with permission from Ref. [32], J. Li and L. W.
Wang, Phys. Rev. B 72, 125325 (2005). Copyright (2005) by the American
Physical Society.
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Figure 6: Size dependence of optical gaps of silicon nanoclusters, calculated
using diffusion Monte Carlo (DMC), GW-BSE, LDA, and time dependent
LDA (TDLDA), time dependent DFT with B3LYP functional (TDDFT-
B3LYP), semiempirical tight-binding and semiempirical pseudopotential
methods. Note the DMC and GW-BSE results are almost the same for
the few small clusters. Reprinted figure with permission from [137], A.J.
Williamson, J.C. Grossman, R.Q. Hood, A. Puzder, G. Galli, Phys. Rev.
Lett. 89, 196803 (2002). Copyright (2002) by the American Physical Soci-
ety.
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Figure 7: Illustration of different possible Auger processes. Reprinted figure
with permission from [112], L. W. Wang, M. Califano, A. Zunger and A.
Franceschetti, Phys. Rev. Lett. 91, 056404 (2003). Copyright (2003) by
the American Physical Society.
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Figure 8: Electron cooling. Auger lifetimes at T = 300K calculated with
EPM within the single-particle (SP) approximation (solid line), and with CI,
both in the absence (dashed line) and in the presence (long-dashed line) of a
spectator ground state exciton. The initial states include all three electron
p states and both hole s states, and the final states es and 30 hole states
hn with energy centered around En0 = ǫhs

− ǫep + ǫes . Reprinted figure
with permission from [112], L. W. Wang, M. Califano, A. Zunger and A.
Franceschetti, Phys. Rev. Lett. 91, 056404 (2003). Copyright (2003) by
the American Physical Society.
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Figure 9: Dependence of the polaron energy levels obtained by direct di-
agonalization (circles) on the artificial shift ∆E. The corresponding single-
particle levels calculated using the 8-band k · p model are shown by full
lines. Lens-shaped quantum dot with the diameter of 20 nm and the height
of 5 nm is considered.
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